Долговечность семян и структурные изменения при хранении, способы определения

Ф. Б. МУСАЕВ, канд. с.-х. наук; А. В. СОЛДАТЕНКО, д-р с.-х. наук
Федеральный научный центр овощеводства, пос. ВНИИССОК, Московская обл.
С. Л. БЕЛЕЦКИЙ, канд. техн. наук
НИИ проблем хранения Федерального агентства по государственным резервам, Москва
А. Ф. БУХАРОВ, д-р с.-х. наук
ВНИИ овощеводства — филиал Федерального научного центра овощеводства, д. Верёв, Московская обл.

Введение. Семена сельскохозяйственных растений — стратегический товар, от правильного оборота которого зависит бесперебойное обеспечение населения питанием и промышленности сырьем. Природа наделила семена уникальным свойством — покойм, что позволяет сохранять их до наступления благоприятных погодных условий для их посева либо заложить на длительное хранение в оптимальных условиях.

Семена высших растений по степени сохранения жизнеспособности принято делить на 3 группы: микробиотики — до 3 лет, мозаикобиотики — от 3 до 15 лет и макробиотики — более 15 лет [1].

Воздействие комплекса факторов на семена при хранении

<table>
<thead>
<tr>
<th>Энзоргенные факторы</th>
<th>Экозоргенные факторы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Физиологические</td>
<td>Метеорологические</td>
</tr>
<tr>
<td>Свет</td>
<td>Электромагнитные излучения</td>
</tr>
<tr>
<td>Биохимические</td>
<td>Тепло</td>
</tr>
<tr>
<td>Генетические</td>
<td>Влага</td>
</tr>
<tr>
<td>Структурные изменения</td>
<td>Воздух</td>
</tr>
<tr>
<td>Химические</td>
<td>Биологические</td>
</tr>
<tr>
<td>Протравители</td>
<td>Болезне-</td>
</tr>
<tr>
<td></td>
<td>тво́ры микро-</td>
</tr>
<tr>
<td></td>
<td>организмы</td>
</tr>
<tr>
<td>Фумиганты</td>
<td>Вредители</td>
</tr>
<tr>
<td>Химические мутагены</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 1. Сотрудники Росрефера проводят плановую инспекцию и закладку по эксперименту длительного хранения семян, п.о. Таймыр, июль 2016 г.

Большинство культурных растений относятся к группе мезобиотиков. Такое подразделение можно считать весьма условным, так как в зависимости от условий выращивания долговечность семян может резко измениться. Возможно также продление сохранения жизнеспособности семян и плодов в 2—4 или более раз путем специального хранения [2—7].

Необходимость хранения семян также связана с последующим поколением некоторых видов, например культуры семейства сельдереевых (Asteraceae). Они после уборки имеют низкую всхожесть и должны пройти некоторый период покоя для поднятия всхожести [8, 9].

В период хранения семена подвергаются воздействию ряда факторов, их можно сгруппировать следующим образом (таблица).

Важнейшие внешние факторы для хранения семян — температура и влажность воздуха. Принцип оптимального соотношения этих факторов использу́ется при создании хранилищ семян. В последнее время все больше ведется поиск естественных природных хранилищ для длительного хранения семян. Длинное хранение семян позволяет поддержать огромное биоразнообразие, генетические ресурсы растений.

В случае нештатных, чрезвычайных ситуаций именно природные хранилища окажутся в выгодном положении. НИИ проблем хранения совместно с другими НИИ с 1974 г. ведет экспериментальную работу по возможности длительного хранения пищевых продуктов в условиях вечной мерзлоты на п.о. Таймыр. В 2016 г. ВНИИ селекции и семеноводства овощных культур (ныне ФНИЦ овощеводства) подключился к длительному эксперименту, и были заложены на хранение семена 27 сортов семи основных видов овощных культур. Эксперимент продлится до 2050 г. с промежуточными инспекциями в 2025 и 2035 гг. (рис. 1) [10].

Методов определения возраста семян практически не существует. Речь может идти о характере и степени возрастных изменений в семенах. Внешние эти изменения почти неразличимы, хотя ярко окрашенные семена с возрастом немного тускнеют. Изменения больше заключены во внутренней структуре семян.

Материал и методика. Нами проведен эксперимент по оценке возрастных изменений внутренней структуры семян методом микрофокусной рентгенографии.
Материал для исследования были разновозрастные семена сортов томата и артишока. Рентгенограммы проведены на кафедре электронных приборов и устройств Санкт-Петербургского электротехнического университета. Оборудование: передвижная рентгендиагностическая установка ПРДУ-2, рентгеновский микроскоп РМ-1, специальные сканеры Digora и FCR, персональный компьютер с программным обеспечением.

Экспериментальная часть. Проанализированы разновозрастные семена томата сортов Дубок, Волгоградский 5/95 (РФ) 2014 г., репродукции и гибридных гибридов F1 Bosky и F1 Sadig (Нидерланды) 2002 и 2005 гг. репродукции соответственно. На представленных рентгенограммах (рис. 2) просматривается явное их различие. В целом на рентгеновских проекциях семян томата часто выделяется мощный зародыш, расположенный по периметру плоской стороны. На свежих семенах орнамент корешка зародыша выражено слабо и только на части семян (рис. 2, а). Напротив, старые семена демонстрируют «рисунчатую» форму с четким выражением овала зародыша (рис. 2, б). Изменение рентгеновской проекции внутренней структуры старых семян томата можно объяснить истощением их питательной ткани — эндосперма.

Рис. 2. Рентгенограммы семян томата: а — сорт Дубок (РФ) 2014 г. репродукции; б — F1 Sadig (Нидерланды) 2005 г. репродукции

Рис. 3. Макроштампляи семян томата: а — сорт Дубок (РФ) 2014 г. репродукции; б — F1 Sadig (Нидерланды) 2005 г. репродукции; в — F1 Bosky (Нидерланды) 2002 г. урожая

Рис. 4. Рентгенограммы разновозрастных семян артишока: а — Султан (2013 г. репродукции); б — Красавец (2006 г. репродукции)
Теоретические аспекты хранения и переработки сельхозпродукции

Рис. 5. Увеличенные фрагменты рентгенограмм разновозрастных семян артишока: а — Султан (2013 г. репродукция); б — Красавец (2006 г. репродукция)

Рис. 6. Макроконтролемимки старых семян артишока: а — морщинистость; б — растрескивание; в — распад

а также потерей влажности. Как показано на рис. 2, проекции свежих семян слитно-светлые, внутреннее пространство семени почти целиком заполнено «завитком» зародыша и эндоспермом (рис. 3, а), а на проекции старых семян преимущественно выделяется зародыш, особенно корешок (рис. 3, б, в). Усыхающие элементов зародыша приводят к их отделению друг от друга и тем самым к ясному выявлению границ между ними, прозрачных для рентгеновских лучей и потому на снимках представленных в виде темных линий.

Для анализа также были взяты разновозрастные семена артишока. На рис. 4, а представлена рентгенограмма свежих семян сорта Султан (2013 г. урожая), они выглядят в основном равномерно светлой проекцией, семядоли занимают почти все пространство внутри семенной оболочки. На некоторых семенах просматриваются элементы зародыша (рис. 4, а). На другой рентгенограмме (рис. 4, б) представлены семена сорта Красавец 2006 г. урожая. Они отличаются наличием теневого тонального рисунка, выделяющего элементы зародыша и пространства между ними естественного (усыхание) и искусственного (механические повреждения) происхождения (рис. 4, б). Увеличенный фрагмент рентгенограммы более наглядно демонстрирует это различие (рис. 5). Встречаются потери формы семядолей, их морщинистость, трещины и др. Видимо, с возрастом зародыш семян потерял критический уровень влаги, сморщился (рис. 6, а), дал трещины (рис. 6, б) и даже местами начал рассыпаться (рис. 6, в).

Заключение. Морфометрические изменения внутреннего строения семян, обусловленные их возрастом, обнаруживаемые на рентгеновской проекции, не носят обязательного характера и нуждаются в дальнейшем экспериментальном подтверждении с привлечением других видов. В то же время информативность метода не вызывает сомнений. Он наиболее эффективен при альтернативных вариантах анализа, например анализируются свежие и старые семена.

Практический выход тут очевиден. Не всегда и не все семена овошных культур можно отличить по возрасту. Рентгенографический метод пусть пока и не решает эту задачу сполна, но создает предпосылки для дальнейшей адаптации и совершенствования метода.

Литература

References
Теоретические аспекты хранения и переработки сельхозпродукции

6. Ткаченко, К. Г. Гередиаспория и сезонные колебания в ритмах прорастания / К. Г. Ткаченко // Науч. ведомости Белгород. гос. ун-та. Сер. Естественные науки.— 2009.— Т. 11.— № 9.— С. 44—50.

8. Николаева, М. Г. Покой семян / М. Г. Николаева.— М.: Наука, 1982.— С. 125—183.

9. Бухаров, А. Ф. Температурный стресс и термопокой семян овощных зонтичных культур. Ч. 1: Особенности индукции, проявления и преодоления / А. Ф. Бухаров, Д. Н. Балеев // Овощи России.— 2013.— № 2 (19).— С. 36—41.

10. Пивоваров, В. Ф. Длительное хранение семян в условиях вечно мерзлых Арктики — история эксперимента и новые задачи / В. Ф. Пивоваров [и др.] // Овощи России.— 2016.— № 4.— С. 76—79.

11. Архипов, М. В. Методика рентгенографии в земледелии и растениеводстве / М. В. Архипов [и др.].— М.: РАСХН.— 2001.— 93 с.

Долговечность семян и структурные изменения при хранении, способы определения

Ключевые слова
анатомия; вечная мерзлота; влажность; долговечность; рентгенограммы; семена; температура; факторы; хранение.

Реферат
Семена культурных растений считаются важным стратегическим товаром, контроль за качеством и оборотом которых находится в ведении государства во многих развитых странах. Способность семян храниться в неблагоприятных условиях прорастания позволяет их сохранять длительный период. Это позволяет создавать страховые фонды семян и поддерживать генетические коллекции растений. Оптимальные условия среды продлевают сроки хранения семян, что сокращает расходы на их перевозки. Путем специально го хранения долговечность семян можно продлить в 2-4 раза. Нами, НИИ проблем хранения и ФНЦ агрохимии, проводится экспериментальная работа по поиску оптимальных природных условий для длительного хранения семян в условиях вечной мерзлоты полуострова Таймыр, эксперимент продится до 2050 г. В другой работе совместно с сотрудниками Санкт-Петербургского электротехнического университета исследуется изменение внутренней структуры разновозрастных семян овощных культур — томата и артишока — методом микроскопии рентгенографии. Метод оказался информативным в этом плане, и возрастные структурные изменения на рентгенограммах просматриваются отчетливо. Он наиболее эффективен при альтернативных вариантах анализа, например анализируются свежие и старые семена. Рентгенографический метод часто является незаменимым при экспресс-анализе целого ряда показателей семян, выражающихся в изменении внутренней структуры. Применение рентгенографического метода для анализа качества семян по интроскопическим показателям (скрытой зараженности насекомыми) отражено в отечественных и международных стандартах и уже находится широкое применение. Однако очевидно, что помимо скрытой зараженности данный метод позволяет эффективно выявлять целый ряд других дефектов и показателей качества семян зерновых. В процессе автоматизации данного метода и численной оценки рентгенографических показателей становится очевидным, что для точного, адекватного и хорошо обоснованного применения данного метода необходимо решить целый ряд теоретических и практических задач. Дальнейшая адаптация и совершенствование метода с применением других овощных культур должна дать больше информации о возрастных структурных изменениях семян.

Авторы
Мусаев Фархад Багдад оглу, канд. с.-х. наук;
Солдатенко Алексей Васильевич, д-р с.-х. наук
Федеральный научный центр овощеводства,
143072, Московская обл., Одинцовский район, п.с. ВНИИССОК, ул. Селекционная, д. 14, musaev@bk.ru, vnissok@mail.ru
Белешев Сергей Леонидович, канд. техн. наук
НИИ проблем хранения Федерального агентства
по государственным резервам,
111033, г. Москва, Волочаевская ул., д. 40, корп. 1,
grain-miller@yandex.ru
Бухаров Александр Федорович, д-р с.-х. наук
ВНИИ овощеводства —
филиал Федерального научного центра овощеводства,
140153, Московская область, Раменский район, д. Вереш, стр. 500, ab56@mail.ru

Abstract
Seeds of cultivated plants are considered to be an important strategic commodity, the control over the quality and turnover of seeds is in the hands of the state in many developed countries. The ability of the seeds to rest under unfavorable conditions of germination allows them to remain for a long period. This allows you to create both insurance seed funds and maintain genetic plant collections. Optimal environmental conditions extend the storage of seeds, which reduces the cost of their re-cultivation. By special storage, the longevity of seeds can be extended 2-4 times. We, the Research Institute of Storage Problems and the FNC Vegetable Growing Institute, are experimenting with the search for optimal natural conditions for long-term seed storage in the permafrost conditions of the Taimyr Peninsula, and the experiment will last until 2050. In another work, together with the staff of the St. Petersburg Electrotechnical University, we investigate the change in the internal structure of the different-aged seeds of vegetable crops — tomato and artichoke by the method of microfocus radiography. The method turned out to be informative in this respect, and age-related structural changes on X-ray patterns are clearly seen. It is most effective in alternative analyzes, for example: fresh and old seeds are analyzed. The X-ray method is often indispensable in the rapid analysis of a number of seed indicators, which are reflected in a change in the internal structure. The application of the X-ray method for the analysis of seed quality by intraspecific indices (latent insect infestation) is reflected in domestic and international standards and is already widely used. However, it is obvious that in addition to hidden contamination, this method allows to effectively identify a number of other defects and quality indicators of the grains. In the process of automation of this method and numerical evaluation of radiographic indices, it becomes obvious that for a precise, adequate and well-grounded application of this method it is necessary to solve a number of theoretical and practical problems. Further adaptation and improvement of the method with the use of other vegetable crops should give more information about the age-related structural changes in the seeds.

Authors
Musayev Farhad Bagaday oglu, Candidate of Agricultural Science;
Soldatenko Alexey Vasilyevich, Doctor of Agricultural Science
Federal Scientific Centre of Vegetable Growing,
143072, Russia, musaev@bk.ru, vnissok@mail.ru
Beleshev Sergey Leonidovich, Candidate of Technical Sciences
Scientific Research Institute of Storage Problems Federal Agency of State Reserves,
40-1 Volochavskaya str., Moscow, 111033, Russia,
grain-miller@yandex.ru
Bukharov Alexander Fedorovich, Doctor of Agricultural Science
All-Russian Research Institute of Vegetable Growing —
the branch of Federal Scientific Centre of Vegetable Growing,
500 v. Vereya, Ramensky region, Moscow district, 1400153, Russia,
ab56@mail.ru